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Abstract. We present analytic estimates for the energy levels ofN electrons (N = 2–5)
in a two-dimensional parabolic quantum dot. A magnetic field is applied perpendicularly to
the confinement plane. The relevant scaled energy is shown to be a smooth function of the
parameterβ = (effective rydberg/effective dot energy)1/6. Two-point Pad́e approximants are
obtained from the series expansions of the energy near the oscillator(β → 0) and Wigner
(β → ∞) limits. The approximants are expected to work with an error not greater than 2.5%
over the entire interval 06 β <∞.

1. Introduction

The problem ofN electrons in quantum dots and magnetic fields has been widely considered
in recent years [1].

For the energy levels ofN electrons in model two-dimensional parabolic quantum dots,
the actual magnitude to compute is a scaled energy which depends only on one parameter,
β = (effective rydberg/effective dot energy)1/6. Whenβ → 0 (very high magnetic fields,
for example), we may use perturbation theory to compute the energy levels. In the opposite
limit, β →∞, a strong-coupling expansion may be used to obtain the energy. The idea of
the present paper is to construct two-point Padé approximants interpolating fromβ = 0 to
β →∞. We give results for two, three, four, and five electrons.

To our knowledge, there are only a few alternative analytical ways to obtain the energy of
certain levels over the entire interval 06 β <∞. Semiclassical [2] and 1/|J | expansions
[3, 4], both working for states with high angular momentum,J , are available. Besides
these expansions, there is also the idea of improving the perturbative series by using the
asymptotics forβ →∞ [5]. We see the present paper as a useful complement to the results
of [2–5]. We will see, for example, that it is very simple to find Padé approximants for
states with|J | = 0, 1, 2, for which the methods of [2, 4] do not work.

2. Two-point Pad́e approximants

The construction of approximants follows the idea of [6], in which the hydrogenic energy
levels in a magnetic field were obtained.

0953-8984/97/224643+15$19.50c© 1997 IOP Publishing Ltd 4643



4644 A Gonzalez

Let us consider the expansions of the scaled energy (to be computed in the following
sections) whenβ → 0 andβ →∞:

ε|β→0 =
s∑
k=0

bkβ
k +O(βs+1) (1)

ε|β→∞ = β2

{
t∑

k=0

ak/β
k +O(1/βt+1)

}
. (2)

Many of the coefficients entering (1) and (2) are zero—for example, all of thebk with
k 6= 0 mod 3,a1, a3, etc.

A two-point Pad́e approximant is a rational function:

P(β) =
L∑
k=0

pkβ
k
/ K∑

k=0

qkβ
k (3)

reproducing the expansions (1) and (2).q0 may be fixed to one. The asymptotics when
β →∞ forcesL to be equal toK+2. Equating the number of coefficients in the expansions
(1) and (2) to the number of unknowns in (3), we obtain

s + t = 2K + 1. (4)

At a givenK, there is a set of possible pairss, t . We will attach indicess and t to the
approximant,Ps,t . Among the possiblePs,t , the best one takes nearly the same number of
terms in the expansions (1) and (2) [6], i.e.s ≈ t . For example, atK = 3 the best one,
whose coefficients are computed almost trivially, isP4,3.

Let us consider the equations fulfilled by thepk and theqk. Equating (3) to (1) and (2),
we obtain,

pk = q0bk + q1bk−1+ · · · + qkb0 06 k 6 Min(s,K + 2) (5)

pk = qKaK+2−k + qK−1aK+1−k + · · · + qk−2a0 K + 2−Min(K + 2, t) 6 k 6 K + 2.

(6)

On eliminating the overlappingpk, i.e. k in the interval Max(0, s + 1 − K) 6 k 6
Min(s,K+2), a system of linear equations for the coefficientsqk are obtained. We assume
that s is in the intervalK − 16 s 6 K + 2, so that this system containsK equations. Let
us write explicitly, for example, the approximantP4,3. The coefficientsb1, b2, b4, a1, and
a3 are assumed to be zero. The result is the following:

P4,3(β) = b0+ b3β
3

1+ q1β + q2β2+ q3β3
+ a0β

2

{
1− 1+ q1β

1+ q1β + q2β2+ q3β3

}
(7)

where

q2 = a0/(b0− a2) q1 = a0q2/b3 q3 = (a0q1− b3)/(b0− a2).

Formula (7), or similar expressions for higher approximants (see appendix 1), is to be
used throughout the paper. Let us indicate the way to compute thebk and theak.

3. The coefficientsbk and ak

Let us consider the two-dimensional motion ofN electrons in a parabolic quantum dot of
energyh̄ω0. A magnetic field is applied normally to the plane of motion. The Hamil-
tonian governing the internal motion (centre-of-mass motion is excluded) is written in
dimensionless variables as

H

h̄�
= h+ ωc

2�
J + gωc

2�
Sz (8)
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whereωc is the cyclotron frequency,� =
√
ω2

0 + ω2
c/4 is the effective dot frequency,J is

the total (internal) angular momentum (along thez-axis),Sz is thez-projection of the total
spin,g is the effective gyromagnetic factor, and

h = −
N−1∑
k=1

(
∂2

∂ρ2
k

+ 1

ρk

∂

∂ρk

)
−

N−2∑
k=1

(
1

ρ2
k

+ 1

ρ2
k+1

)
∂2

∂θ2
k

+ 2
N−3∑
k=1

1

ρ2
k+1

∂2

∂θk ∂θk+1
+ 2iJ

N − 1

N−2∑
k=1

(
1

ρ2
k

− 1

ρ2
k+1

)
∂

∂θk

+
N−1∑
k=1

(
J 2

(N − 1)2
1

ρ2
k

+ 1

4
ρ2
k

)
+ β3

∑
k<l

1

rkl
. (9)

Notice thath depends only on one parameter,β3 =
√
µe4/κ2h̄2/

√
h̄�, whereµ is the

effective electron mass, andκ is the relative dielectric constant. The coordinates entering
h are the moduli of the Jacobi vectors:

ρk =
√
µk

µ1

{
rk+1− 1

k

k∑
j=1

rj

}
k = 1, . . . , N − 1 (10)

and the angles betweenρk andρk+1, denoted byθk. The dimensionless reduced masses are
µk = k/(k+1). The steps towards obtaining equation (9) are the following. First, write the
kinetic energy in terms of the Jacobi vectors. Then change to polar coordinates(ρk, αk),
whereαk is the angle associated withρk. After that, introduce the anglesθk = αk+1 − αk,
and4 = (α1 + · · · + αN−1)/(N − 1). 4 is the canonical conjugate to the total angular
momentum,J .

The eigenfunctions ofH are eiJ4ψ , where4 accounts for global rotations, and theψ are
the eigenfunctions ofh. The eigenvalues ofH are trivially obtained from the eigenvalues
of h, which will be calledε. We will obtain Pad́e approximants toε.

In the β → 0 (oscillator) limit, perturbation theory may be applied to obtainε. The
resulting series is the following:

ε|β→0 = b0+ b3β
3+ b6β

6+ · · · (11)

where b0 = N − 1 + |J | + 2n, n is the total number of oscillator quanta, andb3 =
〈φ|∑k<l r

−1
kl |φ〉, etc. For systems with more than two electrons, sometimes degenerate

perturbation theory is used to computeb3, b6, etc.
On the other hand, whenβ → ∞, a strong-coupling expansion may be applied.

Distances are scaled according toρ → βρ. The Hamiltonianh takes the form

h

β2
= 1

4

N−1∑
k=1

ρ2
k +

∑
k<l

1

rkl
+ J 2

(N − 1)2β4

N−1∑
k=1

1

ρ2
k

− 1

β4

{
N−1∑
k=1

(
∂2

∂ρ2
k

+ 1

ρk

∂

∂ρk

)
+

N−2∑
k=1

(
1

ρ2
k

+ 1

ρ2
k+1

)
∂2

∂θ2
k

}

+ 2

β4

{
N−3∑
k=1

1

ρ2
k+1

∂2

∂θk ∂θk+1
+ iJ

N − 1

N−2∑
k=1

(
1

ρ2
k

− 1

ρ2
k+1

)
∂

∂θk

}
. (12)

In the leading approximation,β →∞, we shall minimize the classical potential energy
entering the r.h.s. of (12). WhenN 6 5, it is found that the electrons sit at the corners of
a regular polygon. This is a few-body version of the Wigner solid. In these configurations,
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the classical energy (harmonic plus Coulomb potentials) becomes a function of one variable,
namelyρ1:

U = Nρ2
1

8 sin2π/N
+ sinπ/N

ρ1

∑ 1

|sinθkl/2| (13)

whereθkl is the angle between particlesk and l, measured from the c.m. The minimization
of U leads to an equilibrium value ofρ1, i.e. ρ10. The equilibrium values of the other
coordinates are obtained from geometric considerations. The energy in this approximation
is given byU(ρ10). Corrections to this value are obtained by writingρk = ρk0 + zk/β,
k = 1, . . . , N −1, θk = θk0+ zN−1+k/β, k = 1, . . . , N −2, and expanding the Hamiltonian:

h/β2 = U(ρ10)+ h2/β
2+ h3/β

3+ · · · . (14)

If we write

ψ = ψ0+ ψ1/β + ψ2/β
2+ · · · (15)

ε/β2 = a0+ a2/β
2+ a3/β

3+ · · · (16)

then the Schr̈odinger equation,hψ = εψ , is split into the set of uncoupled equations

a0 = U(ρ10) (17)

h2ψ0 = a2ψ0 etc. (18)

The Hamiltonianh2 describes harmonic oscillations around the Wigner structure. The
expression fora2 is thus

a2 =
2N−3∑
k=1

ωk(nk + 1/2) (19)

where theωk are the normal frequencies. Higher corrections are obtained by considering
h3, h4, etc, as perturbations toh2.

Below, we present results for two, three, four, and five electrons.

4. Two electrons

As mentioned above, the eigenfunctions ofH are written as eiJ4ψ(ρ1). Under a permutation
of particles,4 changes byπ , andψ does not change. Thus, the even|J | are related to
antisymmetric spin functions,S = 0, and the odd|J | are related to states with spinS = 1.

Let φk be the eigenfunctions ofh at β = 0:

φk = Ckρ|J |1 L
|J |
k (ρ

2
1/2)e

−ρ2
1/4 (20)

whereCk = (2|J |(k+ |J |)!/k!)−1/2, and theL|J |k are the generalized Laguerre polynomials.
The corresponding eigenvalues are

b0 = 2k + |J | + 1. (21)

We take a fixedk as the unperturbed level—say,n1. Higher coefficients of the expansion
are computed from

b3 = 〈n1| 1

ρ1
|n1〉 (22)

b6 = 1

2

∑
k 6=n1

|〈n1|1/ρ1|k〉|2
(n1− k) etc. (23)
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Table 1. The first non-zero coefficientsbk andak for a set of two-electron states.

|J |, n b0 b3 b6 a0 a2 a4

0, 0 1 1.253 314−0.345 655 1.190 551 0.866 025−0.034 998
0, 1 3 0.939 986−0.087 406 1.190 551 2.598 076 0.174 989
0, 2 5 0.802 904−0.041 161 1.190 551 4.330 127 0.594 963

1, 0 2 0.626 657−0.032 762 1.190 551 0.866 025 0.594 963
1, 1 4 0.548 325−0.016 339 1.190 551 2.598 076 0.804 950
1, 2 6 0.499 367−0.010 112 1.190 551 4.330 127 1.224 924

2, 0 3 0.469 993−0.011 153 1.190 551 0.866 025 2.484 844
2, 1 5 0.430 827−0.007 016 1.190 551 2.598 076 2.694 831
2, 2 7 0.402 676−0.004 920 1.190 551 4.330 127 3.114 805

3, 0 4 0.391 661−0.005 533 1.190 551 0.866 025 5.634 647
3, 1 6 0.367 182−0.003 911 1.190 551 2.598 076 5.844 634
3, 2 8 0.348 211−0.002 950 1.190 551 4.330 127 6.264 608

We show in table 1 the coefficientsb3 andb6 for a set of two-electron states.
Let us consider now the opposite limit,β →∞. The equilibrium value ofρ1 (scaled)

is ρ10 = 21/3. The coefficienta0 is thusa0 = 3/24/3. Then, we writeρ1 = ρ10+ z1/β, and
expand the Hamiltonian. The results are

h2 = − ∂
2

∂z2
1

+ 3

4
z2

1 (24)

hk = (−1)k

ρk+1
10

zk1 −
(−1)k−3

ρk−2
10

zk−3
1

∂

∂z1
+ J

2(−1)k−4(k − 3)

ρk−2
10

zk−4
1 k > 3. (25)

Notice that thehk with odd (even)k contain only odd (even) numbers of creation and
annihilation operators. Thus, as can be easily verified, all of the coefficientsak with odd k
will be zero. Computation of the matrix elements ofhk is a trivial task. Finally, we obtain

a2 = ω1(n1+ 1/2) (26)

a4 = 2−2/3
{
(n2

1+ n1+ 7/6)/6+ J 2− 1/4
}

etc (27)

whereω1 =
√

3, i.e. the classical result [7]. Note that we have used the same number,n1,
to label the state atβ = 0 and forβ → ∞. As level crossings cannot occur in a sector
with fixed J because there are no more conserved quantities in the problem, the first state
at β = 0 should be the first whenβ →∞, and so on. Note also thatJ appears for the first
time in a4.

The coefficientsa2 anda4 are also shown in table 1 for a set of states. From this table
and formulae contained in appendix 1, we may construct Padé approximants for the energy
levels.

We show in figure 1 the three curvesε|β→0 = b0 + b3β
3 + b6β

6, ε|β→∞ = a0β
2+

a2 + a4/β
2, andP6,5(β) for the first state with quantum numbers|J | = 3, n1 = 0. This is

the typical behaviour of the approximants.
In figure 2, we compare the approximants in the sequencePK+1,K . The same state as in

figure 1 is studied. The relative differences between consecutive approximants are shown.
Theβ-axis is compressed to (0, 1). We see that the maximal difference reduces by a factor
of two whenK is increased by one. These results suggest that the approximantP6,5 (the
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Figure 1. Weak- and strong-coupling expansions (dashed lines), and the approximantP6,5 (solid
line) for two electrons in a state with|J | = 3, n1 = 0.

Figure 2. Relative differences between consecutive approximants in the sequencePK+1,K . The
state with|J | = 3, n1 = 0 is shown.

highest that we computed) is accurate to about three parts in 103 or better. Notice that the
maxima are reached atβ ≈ 2, i.e. in the region where the approximants jump from the
weak-coupling to the strong-coupling regime (see figure 1).

Similar results are obtained for the other states in table 1. WhenJ = 0, however,
the relative differences between the approximants increase to 2%, and some approximants
cannot be used as they exhibit a pole. So, the best of our Padé estimates are expected to
work with an error not greater than 2% in the worst situation.

We show in figure 3 the convergence of the sequencePK+1,K at particularβ-values, at
which exact solutions are available [8]. It can be easily shown, for example, that

ψ = ρ |J |1 (1+ ρ1/
√

2|J | + 1)e−ρ
2
1 (28)

are eigenfunctions ofh at β = (2|J | + 1)1/6, with eigenvaluesε = |J | + 2. The corres-
pondingn1 are zero. When 06 |J | 6 3, β is in the interval 16 β 6 1.38, well outside
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Figure 3. Convergence of the Padé sequencePK+1,K at β = (2|J | + 1)1/6. Two electrons in
states withn1 = 0 are considered. Solid lines represent the exact solutions found in [8].

the exactly solvable limits. The relative error of theP6,5-approximant is lower than 2% at
J = 0, and less than 0.2% at|J | = 3.

5. Three electrons

First, let us consider the computation of the coefficientsak up to a5. The Wigner config-
uration is a triangle with sideρ10 = 31/3 (scaled). The leading approximation to the energy
is

a0 = 35/3

2
. (29)

Then, we writeρ1 = ρ10 + (u + v)/(
√

2β), ρ2 = ρ10 + (u − v)/(
√

2β), θ1 =
π/2+√2z/(ρ10β). Expanding the Hamiltonianh, we arrive at

h2 = −
(
∂2

∂u2
+ ∂2

∂v2
+ ∂2

∂z2

)
+ 3

4
u2+ 3

8
(v2+ z2) (30)

h3 = 1

16
√

2ρ10

{
−32

∂

∂u
+ 32u

∂2

∂z2
− 8u3− 6uv2− 5v3− 6uz2+ 15vz2

}
(31)

h4 = 1

ρ2
10

{
J 2

2
+ u ∂

∂u
− 3

2
u2 ∂

2

∂z2
+ 1

4
u4+ v ∂

∂v
− 2iJv

∂

∂z
− 3

2
v2 ∂

2

∂z2
+ 3

8
u2v2+ 5

8
uv3

+ 9

256
v4+ 3

16
u2z2− 15

16
uvz2− 3

128
v2z2+ 41

256
z4

}
etc. (32)

u, v, andz are normal coordinates.u corresponds to a symmetric oscillation (breathing)
with frequencyω1 =

√
3, whereasv andz correspond to a mixed oscillation of the Wigner

structure, with frequencyω2 =
√

3/2. In the harmonic approximation, the spatial wave
function is written as

ψ = χn1(u)χn2(v)χn3(z)e
iJ4 (33)

where theχ are oscillator functions, i.e. Hermite polynomials multiplied by gaussians. A
function ψ that can be antisymmetrized is related to a spin-polarized state (S = 3/2) of
three electrons. On the other hand, a mixed-symmetryψ is related to a spin-half state.
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Let us consider the lowest state with a givenJ , i.e. that with numbersn1 = n2 = n3 = 0.
This state may be spatially antisymmetrized only whenJ = 3k, with k an integer. The
argument goes along the lines sketched in [9]: a cyclical permutation of electrons in
the triangle, leaving the wave function invariant, is equivalent to a 2π/3 rotation, which
multiplies it by eiJ2π/3; thus eiJ2π/3 = 1. The excitations withn2 = n3 = 0 correspond
also to antisymmetric states. Then2 + n3 = 1 states correspond to mixed-symmetry
doublets, etc. On the other hand, whenJ 6= 3k, the lowest state and the excitations with
n2 = n3 = 0 have mixed symmetry. An antisymmetric and a mixed-symmetry state appear
at n2+n3 = 1, etc. We will restrict the analysis to the lowest state and the first excitations.

The coefficienta2 is thus given by

a2 =
√

3(n1+ 1/2)+
√

3/2(n1+ n2+ 1). (34)

Higher corrections are computed from perturbation theory aroundh2. For the same
reason as for two particles,a3 anda5 are equal to zero. The next non-zero coefficient is

a4 = 〈n1, n2, n3|h4|n1, n2, n3〉
+

∑
(k1,k2,k3)6=(n1,n2,n3)

〈n1, n2, n3|h3|k1, k2, k3〉〈k1, k2, k3|h3|n1, n2, n3〉√
3(n1− k1)+

√
3/2(n1+ n2− k1− k2)

.

(35)

The computation of the matrix elements entering (35) is trivial, leading to

a4 = 1

144ρ2
10

{
−2+ 9

√
2+ 72J 2+ (12+ 18

√
2)n1+ 12n2

1

+ (36+ 9
√

2+ 18
√

2n1)(n2+ n3)+ 228n2n3− 78(n2
2+ n2

3)
}
. (36)

Let us stress that we expanded the Hamiltonian around a structure withθ1 = π/2. There
is an equivalent configuration withθ1 = −π/2. In the expansion (16), we have neglected
tunnelling between the two equivalent configurations. The same comment holds for systems
with more than three electrons. Notice also that the second local minimum ofU , the linear
structure (second ‘Lagrange’ solution), is at a distance 0.36β2 above the lowest state. We
can disregard any effect arising from this structure whenβ2� a2/0.36.

The computation of the coefficientb3 requires the wave functions atβ = 0. They may
be explicitly constructed as indicated in [10]. We will computeb3 for a set of states with
|J | = 0, 1, 2, and 3. In all of these states, the corresponding quantum numbers forβ →∞
can be specified.

For example, whenJ = 0, the first antisymmetric (A) state atβ = 0, which starts from
b0 = 4 (it will be labelled (4, A)), goes to the first A forβ →∞, i.e.(n1, n2, n3) = (0, 0, 0).
The first mixed state, (4, M), goes to the first doublet withn1 = 0, n2+n3 = 1. The second
antisymmetric state, (6, A), goes to (1, 0, 0). At|J | = 1, (3, M) goes to (0, 0, 0), and
(5, A) goes to a state withn1 = 0, n2 + n3 = 1. At |J | = 2, (4, M) goes to (0, 0, 0), and
(6, A) goes to a state withn1 = 0, n2 + n3 = 1. At |J | = 3, (5, A) goes to (0, 0, 0), and
(5, M) to a state withn1 = 0, n2+ n3 = 1.

Let us write out explicitly the wave functions needed atβ = 0 (up to normalizations).
In the case of mixed symmetry, only one representative of the doublet is given.

For J = 0:

φ4,A = ρ1ρ2 sinθ1 e−(ρ
2
1+ρ2

2)/4 (37)

φ4,M = (ρ2
1 − ρ2

2)e
−(ρ2

1+ρ2
2)/4 (38)

φ6,A = ρ1ρ2 sinθ1(ρ
2
1 + ρ2

2 − 8)e−(ρ
2
1+ρ2

2)/4. (39)
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For J = 1:

φ3,M = ρ1e−iθ1/2e−(ρ
2
1+ρ2

2)/4 (40)

φ5,A =
{
(−2ρ1ρ

2
2 + ρ3

1)e
−iθ1/2− ρ1ρ

2
2e3iθ1/2

}
e−(ρ

2
1+ρ2

2)/4. (41)

For J = 2:

φ4,M = ρ1ρ2e−(ρ
2
1+ρ2

2)/4 (42)

φ6,A = ρ1ρ2 sinθ1(ρ
2
1e−iθ1 + ρ2

2eiθ1)e−(ρ
2
1+ρ2

2)/4. (43)

For J = 3:

φ5,A =
{
ρ3

1e−3iθ1/2− 3ρ1ρ
2
2eiθ1/2

}
e−(ρ

2
1+ρ2

2)/4 (44)

φ5,M =
{
ρ3

1e−3iθ1/2+ ρ1ρ
2
2eiθ1/2

}
e−(ρ

2
1+ρ2

2)/4. (45)

Table 2. The first non-zero coefficientsbk andak for certain three-electron states.

|J |, symmetry b0 b3 a0 a2 a4

0, A 4 1.879 97 3.120 13 2.090 77 0.035 8156
0, M 4 2.584 96 3.120 13 3.315 52−0.061 9104
0, A 6 1.762 47 3.120 13 3.822 82 0.200 926

1, M 3 2.819 96 3.120 13 2.090 77 0.276 191
1, A 5 1.821 22 3.120 13 3.315 52 0.178 464

2, M 4 2.232 47 3.120 13 2.090 77 0.997 315
2, A 6 1.586 23 3.120 13 3.315 52 0.899 589

3, A 5 1.703 72 3.120 13 2.090 77 2.199 19
3, M 5 2.261 84 3.120 13 3.315 52 2.101 46

Figure 4. As figure 2, but for the first antisymmetric state of three electrons with|J | = 3.

The computation ofb3 is thus a trivial task. We grouped all of the results together in
table 2. With these coefficients, we construct the approximantsP3,2, P4,3, andP5,4.
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The convergence analysis of the Padé sequencePK+1,K is shown in figure 4 for the
lowest antisymmetric state with|J | = 3. As in the two-electron problem, convergence
is strong, suggesting theP5,4-interpolant to be accurate to about six parts in 103 or better
over the entire interval 06 β <∞. Similar results are obtained for the lowest states with
|J | = 2, and 1. The excited states and the states withJ = 0 show a slower convergence.
The relative error is estimated as 2%.

6. Four electrons

First, let us compute the coefficientsa0 anda2. As in previous cases,a1 = a3 = 0.
The equilibrium configuration atβ → ∞ is a square with sideρ10 = (2+ √2/2)1/3

(scaled). The equilibrium values of the other coordinates areρ20 =
√

5/3 ρ10, ρ30 =
2ρ10/

√
3, θ10 = arctan 2, andθ20 = 3π/4− θ10. a0 is given by

a0 = 3(2+
√

2/2)1/3. (46)

Expanding around the equilibrium geometry, we obtain the quadratic Hamiltonian

h2 = −
(
∂2

∂z2
1

+ ∂2

∂z2
2

+ ∂2

∂z2
3

)
−
(

1

ρ2
10

+ 1

ρ2
20

)
∂2

∂z2
4

−
(

1

ρ2
20

+ 1

ρ2
30

)
∂2

∂z2
5

+ 2

ρ2
20

∂

∂z4

∂

∂z5
+ V2 (47)

where

V2 = 0.543 374z2
1 + 0.157 283z1z2+ 0.520 305z2

2 + 0.182 039z1z3+ 0.377 402z2z3

+0.460 201z2
3 + 0.171 862z2z4+ 0.192 148z3z4+ 0.517 308z2

4

+ 0.110 937z1z5+ 0.085 931z2z5+ 0.562 904z4z5+ 0.853 613z2
5. (48)

The normal frequencies are easily found:

ω1 = 1.049 69

ω2 = 1.139 11

ω3 = 1.362 27

ω4 = 1.462 01

ω5 = 1.756 40

(49)

and, thus, the coefficienta2 is given by

a2 =
5∑
k=1

ωk(nk + 1/2). (50)

Notice that the frequency corresponding to the breathing mode,ω5, is close to the
classical value

√
3, but it does not exactly coincide with

√
3.

As in theN = 3 problem, the lowest state with a given|J |, i.e. nk = 0, k = 1, . . . ,5,
can be spatially antisymmetrized only when|J | takes certain values. The allowed values
are |J | = 2, 6, 10, . . .. These are polarized spin states, i.e. with total spinS = 2. The
excitations of theω5-mode have the symmetry of the ground state.

Let us stress that, asN increases, the number of equivalent configurations (geometries
with the samea0) increases, and the energetic distance to other local minima of the classical
energy decreases. Thus, tunnelling effects become more and more important.
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In what follows, we restrict the analysis to the lowest spin-polarized state, that is|J | = 2,
and thenk = 0. It seems that it is the lowest state ofh in the sector withS = 2 at any
β. Indeed, asβ → 0, this state becomes an oscillator state withb0 = 7, i.e. (7, A) in the
terminology used above. There is a second state (7, A), withJ = 0. However, according
to Hund’s rule, this state has a higher energy forβ � 1. Whenβ →∞, theJ = 0 state is
also higher in energy becauseJ = 0 is not compatible withnk = 0; thus excitation quanta
are needed.

Let us compute the coefficientb3 for the |J | = 2 state. The wave function atβ = 0 is
given in appendix 2. Calculations may be carried out analytically, leading to

b3 = 6
〈φ7,A|1/ρ1|φ7,A〉
〈φ7,A|φ7,A〉 = 91

64

√
2π. (51)

Figure 5. The relative difference betweenP4,3 andP3,2 for the lowest antisymmetric state of
four electrons (|J | = 2).

Once we have computeda0, a2, b0, andb3, we may construct the approximantsP3,2

andP4,3, which are the main results of this section. The relative difference betweenP3,2

andP4,3 is shown in figure 5, suggesting thatP4,3 may estimate the energy with an error
not greater than 2% at intermediate values ofβ.

Pad́e approximants to other levels may be constructed in the same way.

7. Five electrons

We follow the same programme as in theN = 4 problem, i.e. computation ofa0, a2, b0,
andb3, and, from them, construction of the approximantsP3,2 andP4,3.

The equilibrium configuration atβ → ∞ is a pentagon with sideρ10 = 1.307 66
(scaled). The equilibrium values of the other coordinates are as follows:ρ20/ρ10 = 1.441 77,
ρ30/ρ10 = 1.532 44,ρ40/ρ10 = 1.345 00, θ10 = 0.865 925 rad,θ20 = 1.744 28 rad, and
θ30 = −1.039 41 rad.a0 is given by

a0 = 9.280 13. (52)
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Expanding around the equilibrium configuration, we obtain the Hamiltonianh2,

h2 = −
(
∂2

∂z2
1

+ ∂2

∂z2
2

+ ∂2

∂z2
3

+ ∂2

∂z2
4

)
−
(

1

ρ2
10

+ 1

ρ2
20

)
∂2

∂z2
5

−
(

1

ρ2
20

+ 1

ρ2
30

)
∂2

∂z2
6

−
(

1

ρ2
30

+ 1

ρ2
40

)
∂2

∂z2
7

+ 2

ρ2
20

∂

∂z5

∂

∂z6
+ 2

ρ2
30

∂

∂z6

∂

∂z7
+ V2 (53)

where

V2 = 0.624 037z2
1 − 0.007 988z1z2+ 0.514 889z2

2 + 0.107 324z1z3

+ 0.231 789z2z3+ 0.438 330z2
3 + 0.073 587z1z4+ 0.245 901z2z4

+ 0.381 949z3z4+ 0.373 258z2
4 + 0.315 672z2z5− 0.296 995z3z5

+ 0.451 706z2
5 + 0.313 498z1z6− 0.217 440z2z6− 0.286 484z3z6

+ 0.326 409z4z6+ 0.765 563z5z6+ 1.438 39z2
6 − 0.126 796z2z7

+ 0.119 294z3z7+ 0.169 244z5z7+ 1.378 49z6z7+ 1.460 79z2
7. (54)

The normal frequencies following from the eigenvalue problem forh2 are

ω1 = 0.727 516

ω2 = 0.804 763

ω3 = 1.371 85

ω4 = 1.525 05

ω5 = 1.688 99

ω6 = 1.732 05

ω7 = 1.743 75

(55)

and the coefficienta2 is given by

a2 =
7∑
k=1

ωk(nk + 1/2). (56)

The allowed values of|J | for antisymmetric states withnk = 0 are|J | = 0, 5, 10, . . ..
In these states the total spin isS = 5/2. In what follows, we consider the lowest state
in this sequence, i.e.J = 0. This state changes to a (10, A) state asβ → 0. It is not,
however, the lowest of all antisymmetric levels forβ � 1, because a second (10, A) state
with |J | = 2 minimizes the Coulomb repulsion.

The wave function of theJ = 0 state is given in appendix 2. Calculations may also be
performed analytically, leading to

b3 = 149

64

√
2π. (57)

We show in figure 6 the relative difference betweenP3,2 andP4,3. This difference is
not greater than 2.5%.

Pad́e approximants to other levels may be constructed in the same way.

8. Concluding remarks

We have studied systems of two to five electrons in a two-dimensional parabolic quantum
dot. The potentials involved in this problem (harmonic plus Coulomb repulsion) are very
gentle, and lead to a smooth dependence of the energyε on the coupling constantβ. This
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Figure 6. As figure 5, but for the lowest antisymmetric state of five electrons with angular
momentumJ = 0.

fact is graphically represented in figure 1, where it is seen that the ‘regions of convergence’
of the perturbative and the strong-coupling series ‘intersect’ one another.

The degrees of homogeneity of the potentials are also important factors contributing
towards the smoothness ofε. They lead to expansion series containing only powers ofβ3

for β → 0, and inverse powers ofβ2 for β →∞. From the calculational point of view, this
means that with the help of trivial computations, not beyond first-order perturbation theory,
we may construct approximants up toP4,3—that is, a quotient of a fifth-order polynomial
and a third-order polynomial inβ. These approximants are exact in both theβ → 0 and
β →∞ limits, leading to errors not greater than 2.5% in the small transition region where
they jump from one expansion to the other. The accuracy may be improved by computing
higher approximants, as shown for two and three electrons.

Acknowledgments

The author acknowledges financial support from the Colombian Institute for Science and
Technology (COLCIENCIAS) under Project 1118-05-661-95, and from the Committee for
Scientific Research at the Universidad Nacional (CINDEC). The author is indebted to B
Rodriguez, J Mahecha and L Quiroga for useful discussions.

Appendix 1. The approximants used in the paper

P3,2(β) = b0+ a0β
2
{
1− (1+ b3β/a0+ a0β

2/(b0− a2))
−1
}
. (A1)

P4,3 is given by equation (7).

P5,4(β) = b0+ b3β
3

1+ q1β + · · · + q4β4
− (b0− a2)q4β

4

1+ q1β + · · · + q4β4

+ a0β
2

{
1− 1+ q1β

1+ q1β + · · · + q4β4

}
(A2)
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where

q2 = a0q3/b3 q1 = 1

a0
{b3+ (b0− a2)q3}

q4 = a0

a4

{
−1+ b0− a2

b3
q3

}
(A3)

andq3 is determined from the equation

−b3q1+ a0q2− (b0− a2)q4 = 0. (A4)

We also have

P6,5(β) = b0+ b3β
3

1+ q1β + · · · + q5β5
− (b0− a2){q4β

4+ q5β5}
1+ q1β + · · · + q5β5

+ a0β
2

{
1− 1+ q1β

1+ q1β + · · · + q5β5

}
(A5)

where

q3 = 1

b3
{a0q4− b6} q2 = 1

b0− a2
{a0+ a4q4}

q1 = 1

b3
{a0q2− (b0− a2)q4}

q5 = 1

a4
{b3+ (b0− a2)q3− a0q1}

(A6)

andq4 is found from

−b3q2+ a0q3− (b0− a2)q5 = 0. (A7)

Appendix 2. Wave functions for four and five electrons atβ = 0

We show the explicit form of the functionsφ7,A, N = 4, andφ10,A, N = 5. Therj are
measured from the c.m., and(a×b)z denotes thez-component (normal to the plane) of the
vector product:

φ7,A =
{[
ρ3 · r1/ρ3+ i(ρ3× r1)z/ρ3

]2
[r2× r3+ r3× r4+ r4× r2]z

− [
ρ3 · r2/ρ3+ i(ρ3× r2)z/ρ3

]2
[r3× r4+ r4× r1+ r1× r3]z

+ [
ρ3 · r3/ρ3+ i(ρ3× r3)z/ρ3

]2
[r4× r1+ r1× r2+ r2× r4]z

− r2
4 [r1× r2+ r2× r3+ r3× r1]z

}
e−(ρ

2
1+ρ2

2+ρ2
3)/4e2i(θ1+2θ2)/3. (B1)

φ10,A = e−(ρ
2
1+ρ2

2+ρ2
3+ρ2

4)/4{(r1 · r2)(r1× r2)z [r3× r4+ r4× r5+ r5× r3]z
+ (r2 · r3)(r2× r3)z [r4× r5+ r5× r1+ r1× r4]z
+ (r3 · r4)(r3× r4)z [r5× r1+ r1× r2+ r2× r5]z
+ (r4 · r5)(r4× r5)z [r1× r2+ r2× r3+ r3× r1]z
+ (r5 · r1)(r5× r1)z [r2× r3+ r3× r4+ r4× r2]z
− (r1 · r3)(r1× r3)z [r4× r5+ r5× r2+ r2× r4]z
− (r2 · r4)(r2× r4)z [r5× r1+ r1× r3+ r3× r5]z
− (r3 · r5)(r3× r5)z [r1× r2+ r2× r4+ r4× r1]z
+ (r1 · r4)(r1× r4)z [r5× r2+ r2× r3+ r3× r5]z
+ (r2 · r5)(r2× r5)z [r1× r3+ r3× r4+ r4× r1]z}. (B2)
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